

Virtual Design Review #2

Air Force Research Lab (AFRL) Polymer Infiltration Device

Haimowitz, Stern

The Team

Catherine Kent Lead ME/Research Coordinator

Emily Stern Lead Technologist

Michael Haimowitz Team Leader

Haimowitz

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

James Jenkins

Geometric Integrator

Project Scope

- Design and build a prototype to infiltrate opencell lattice structures with silicone
- Evenly fill the lattices
- Eliminate air voids
- Achieve porosity of less than 1%

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Detailed Scope - Project Goals

- Design a device that will completely fill a lattice structure with silicone
- Create a functional prototype
- Analyze filled lattice to verify removal of cavities
- If possible, test the device using silicone mixed with interstitial solids

Project Targets Emily Stern

Customer Need	Metric	Target
	Porosity	< 1%
Fills lattice without	Void Volume %	< 1%
Peresty	Serial Sectioning	< 1% void area

Customer Need	Metric	Target
Fills small cube, large cube, and cylindrical lattices	Tolerance	< 0.01 inch of lattice surface
Specimen unconstrained in height		Yes
	Volume per unit height (in ³)	Small cube: 4h
Specimen constrained by length and width		Large cube: 16h
		Cylinder: 2.25πh

Customer Need	Metric	Target
Fills small cube, large cube, and cylindrical lattices	Tolerance	< 0.01 inch of lattice surface
Specimen unconstrained in height		Yes
a	Volume per	Small cube: 4h
Specimen constrained by length and width	unit height (in ³)	Large cube: 16h
		Cylinder: 2.25πh

Customer Need	Metric	Target
Fills small cube, large cube, and cylindrical lattices	Tolerance	< 0.01 inch of lattice surface
Specimen unconstrained in height		Yes
~	Volume per	Small cube: 4h
Specimen constrained by length and width	unit height (in ³)	Large cube: 16h
		Cylinder: 2.25πh

Customer Need	Metric	Target
Fills small cube, large cube, and cylindrical lattices	Tolerance	< 0.01 inch of lattice surface
Specimen unconstrained in height		Yes
~	Volume per	Small cube: 4h
Specimen constrained by length and width	unit height (in ³)	Large cube: 16 <i>h</i>
		Cylinder: 2.25πh

Customer Need	Metric	Target
Ensure a working prototype		Yes
	Working time	< 90 minutes
Uses standardized equipment and methodology	Time to degas	Degas+fill
	Time to fill lattice	lattice < 90 min
Used standardized parts		Yes
Provide guidelines to operate prototype and avoid hazards		Yes

Customer Need	Metric	Target
Ensure a working prototype		Yes
	Working time	< 90 minutes
Uses standardized equipment and methodology	Time to degas	Degas+fill
	Time to fill lattice	lattice < 90 min
Used standardized parts		Yes
Provide guidelines to operate prototype and avoid hazards		Yes

Customer Need	Metric	Target
Ensure a working prototype		Yes
	Working time	< 90 minutes
Uses standardized equipment and methodology	Time to degas	Degas+fill
	Time to fill lattice	lattice < 90 min
Used standardized parts		Yes
Provide guidelines to operate prototype and avoid hazards		Yes

Customer Need	Metric	Target
Ensure a working prototype		Yes
	Working time	< 90 minutes
Uses standardized equipment and methodology	Time to degas	Degas+fill
	Time to fill lattice	lattice < 90 min
Used standardized parts		Yes
Provide guidelines to operate prototype and avoid hazards		Yes

Customer Need	Metric	Target
Ensure a working prototype		Yes
	Working time	< 90 minutes
Uses standardized equipment and methodology	Time to degas	Degas+fill
	Time to fill lattice	lattice < 90 min
Used standardized parts		Yes
Provide guidelines to operate prototype and avoid hazards		Yes

Functional Decomposition and Concept Generation

Functional Decomposition

Isolate lattice

Transfer fluid

Purge air out of fluid/lattice

Fill lattice

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Concept	Pros V	Cons 关
Vacuum	Simple, sufficient for large amounts of silicone	Large degass volume required, loud
Centrifuge	Quick, no volume expansion	Only small amounts at a time (~10mL)
Vibration table	No volume expansion	Large time required for bubbles to rise, loud

Concept	Pros	Cons 关
Vacuum	Simple, sufficient for large amounts of silicone	Large degass volume required, loud
Centrifuge	Quick, no volume expansion	Only small amounts at a time (~10mL)
Vibration table	No volume expansion	Large time required for bubbles to rise, loud

Concept	Pros V	Cons 🗱
Vacuum	Simple, sufficient for large amounts of silicone	Large degass volume required, loud
Centrifuge	Quick, no volume expansion	Only small amounts at a time (~10mL)
Vibration table	No volume expansion	Large time required for bubbles to rise, loud

Concept	Pros 🗸	Cons 关
Vacuum	Simple, sufficient for large amounts of silicone	Large degass volume required, loud
Centrifuge	Quick, no volume expansion	Only small amounts at a time (~10mL)
Vibration table	No volume expansion	Large time required for bubbles to rise, loud

Concept	Pros	Cons
Vacuum	No trapped air	Requires pressurized fill chamber
Fill from top	Simple	Trap air within lattice, introduce air to degassed silicone
Fill from bottom	More difficult to trap air	Must be done slowly to limit uneven fill
Vibration table	Increases mobility of silicone	Trapped air might remain stuck, loud

Concept	Pros	Cons
Vacuum	No trapped air	Requires pressurized fill chamber
Fill from top	Simple	Trap air within lattice, introduce air to degassed silicone
Fill from bottom	More difficult to trap air	Must be done slowly to limit uneven fill
Vibration table	Increases mobility of silicone	Trapped air might remain stuck, loud

Concept	Pros	Cons
Vacuum	No trapped air	Requires pressurized fill chamber
Fill from top	Simple	Trap air within lattice, introduce air to degassed silicone
Fill from bottom	More difficult to trap air	Must be done slowly to limit uneven fill
Vibration table	Increases mobility of silicone	Trapped air might remain stuck, loud

Concent	Drea	Conc
Concept	Pros	Colls
Vacuum	No trapped air	Requires pressurized fill chamber
Fill from top	Simple	Trap air within lattice, introduce air to degassed silicone
Fill from bottom	More difficult to trap air	Must be done slowly to limit uneven fill
Vibration table	Increases mobility of silicone	Trapped air might remain stuck, loud

Concept	Pros	Cons
Vacuum	No trapped air	Requires pressurized fill chamber
Fill from top	Simple	Trap air within lattice, introduce air to degassed silicone
Fill from bottom	More difficult to trap air	Must be done slowly to limit uneven fill
Vibration table	Increases mobility of silicone	Trapped air might remain stuck, loud

Concept	Pros	Cons
Vacuum bag	Glossy finishes, universal, reduce amount of volatiles	Could produce concavities, cannot control evenness of silicone
Plunger	Quick height adjustments	Not universal for all shapes
Jig	Controls tolerance, easy mobility of lattice	Not universal for all shapes

Concept	Pros	Cons
Vacuum bag	Glossy finishes, universal, reduce amount of volatiles	Could produce concavities, cannot control evenness of silicone
Plunger	Quick height adjustments	Not universal for all shapes
Jig	Controls tolerance, easy mobility of lattice	Not universal for all shapes

		_
Concept	Pros	Cons
Vacuum bag	Glossy finishes, universal, reduce amount of volatiles	Could produce concavities, cannot control evenness of silicone
Plunger	Quick height adjustments	Not universal for all shapes
Jig	Controls tolerance, easy mobility of lattice	Not universal for all shapes

		`•
Concept	Pros	Cons 🔷
Vacuum bag	Glossy finishes, universal, reduce amount of volatiles	Could produce concavities, cannot control evenness of silicone
Plunger	Quick height adjustments	Not universal for all shapes
Jig	Controls tolerance, easy mobility of lattice	Not universal for all shapes

Summarization and Going Forward Mike Haimowitz

Summary

- •Elimination of porosity is the highest priority
- •Functions divided into Subsystems for Concept
 - Generation:
 - Degas silicone
 - •Fill lattice
 - Isolate lattice
- •To mitigate cons and expand pros, the combination of various concepts will need to be analyzed

Going Forward

- Concept Selection
 - Decision matrix
 - Pugh Matrix
- Create preliminary designs
 - Bill of materials
 - Prototype ideas
 - Solidworks simulations
- Get supplies for prototype
- Build prototype

Haimowitz

Works Cited

- 1. Flater, P. J. (2017). Senior Design Project Definition. Eglin Air Force Base.
- VRC Pro. (n.d.). Retrieved October 08, 2017, from http://www.redrc.net/2009/03/xceed-carbon-printed-bodieswings/
- 3. Nicholson, B., Chang, E., Davis, D. L., & Brodsky, M. R. (n.d.). One of America's Top Allies Has Lots to Say About the F-35. Retrieved October 08, 2017, from http://nationalinterest.org/blog/the-buzz/expert-the-f-35-broken-obsolete-design-unsuitable-modern-19475
- 4. Former Graduate Students. (n.d.). Retrieved October 14, 2017, from http://www.reef.ufl.edu/Faculty/Cazacu/NewWebpage/People.html
- 5. FAMU-FSU College of Engineering :: Faculty and Staff Search. (2017, August 20). Retrieved from https://eng.famu.fsu.edu/shared/fac_search.html?new=true&fullName=&department=Mechanical+Engineering&s ubmit=Search
- 6. Arbitrarily0. Composite_elastic_modulus.svg. (2013). Retrieved October 15, 2017, from https://en.wikipedia.org/wiki/Rule_of_mixtures#/media/File:Composite_elastic_modulus.svg
- 7. composite1_updated.png. (2016). Retrieved October 15, 2017, from https://www.doitpoms.ac.uk/tlplib/bones/derivation_mixture_rules.php
- 8. (Yadama & Englund, n.d.). Rule of Mixtures. Retrieved October 15, 2017, from http://pas.ce.wsu.edu/CE537-1/Lectures/Rule%20of%20Mixtures.pdf
- 9. full-beaker-4554516.jpg. (2013). Retrieved October 15, 2017, from https://thumbs.dreamstime.com/z/full-beaker-4554516.jpg
- 10. maxresdefault.jpg. (2013). Retrieved October 15, 2017, from https://www.youtube.com/watch?v=bbSvzD8g_S0
- 11. Boiling-Water1_1.jpg. (2017). Retrieved October 15, 2017, from https://mineral-medix.com/wp-content/uploads/2016/09/Boiling-Water1_1.jpg
- 12. cellular_structures_1.jpg. (2015). Retrieved October 15, 2017, from http://fea.ru/news/6156

Questions?

Possible Future Concepts

- Lattice is placed in molding chamber and plunger is pressed down
- Pump is used to withdraw air from the chamber and to draw silicone through the lattice
- Plunger is lifted and lattice removed

Possible Future Concepts

- Place lattice in respective jig on scale inside of the vacuum chamber
- Add silicone to vacuum chamber
- Purge air from chamber
- Release vacuum once silicone has been degassed
- Add silicone to jig until desired weight is reached
- Place lattice on vibration table and pull vacuum
- Leave lattice to cure

